BULETINUL Vol. LVIII 23-30 Seria
Universitatii Petrol — Gaze din Ploiesti No. 1/2006 ) Matematica - Informatica - Fizica

On Viscous Dissipation in the Incompressible Fluid
Flow between Two Parallel Plates

Tudor Boaca

Universitatea Petrol-Gaze din Ploiesti, Bd. Bucuresti 39, Ploiesti, Catedra de Matematica
e-mail: tboaca@upg-ploiesti.ro

Abstract

This paper considers the problem of viscous dissipation in the laminar incompressible fluid flow between
two parallel plates with Neumann boundary conditions. The method proposed to determine the
temperature of the fluid makes use of the separation of variables. Thus the solution of the problem is
obtained by series expansion about the complete eigenfunctions system of a Sturm-Liouville problem.
Eigennfunctions and eigenvalues of this Sturm-Liouville problem is obtained by Galerkin’s method.
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Introduction

The problem of viscous dissipation in the fluid flow has many practical applications. An
example is oil products transportation through ducts; another is the polymer processing.

Now we will consider the incompressible laminar fluid flow between two infinite parallel plates.
The plates are maintained at a constant temperature 7;, and the fluid flows through the plates

with the same temperature. The flow is slow, thus we can neglect the heat transfer by
conduction in flow direction. At the same time we will consider that the fluid density p,

specific heat C,and the heat transfer coefficient k are constants. The flow is related to a

cartesian coordinate system, the Ox axis will be directed to the flow direction, the Oy axis is

normal to the plates and the distance between plates is 2/ . A similar problem but with Dirichlet
boundary conditions was considered in [1].

For the fluid velocity in the cross section we will consider the expression

(3
v=v,|1- Y , €]

where v, is the maximal fluid velocity, N = (n + 1)/ n where n is a rheological constant of the

fluid. For Newtonian fluids n =1, for Bingham expanded fluid #n <1 and for Bingham
pseudoplastic fluid n>1.

Given these conditions the energy equation is [3], [9]:
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where K is a theological constant of the fluid.

The aim of this article is to establish an approximate solution of equation (1), which verifies
certain initial conditions and Neumann boundary conditions. For this we shall follow the
method proposed in [1].

The plan of the article is: in section two we formulate the mathematical problem, section three
will contain the algorithm for determination of eigenvalues and eigenfunctions (for the Sturm-
Liouville problem obtained by method of separation of variables) with Galerkin’s method [2], in
section four we will present the approximate solution of the problem and the last section
contains some numerical results.

The Mathematical Problem

We associate to equation (1) the initial condition

x=0,T=T, 3)
and boundary conditions
v=0,2%_0, x>0 @
oy
v=h. 20, (x>0). s)
oy

Condition (4) specifies that at the middle of the distance between plates the temperature has a
maximum point and condition (5) specifies the adiabatic wall (Neumann boundary condition).

It is suitable to rewrite the equation (2) and the initial and boundary conditions (3), (4), (5) in
dimensionless form. With the transformation group

_T-T, y kx

M= Y= (6)

0 - 2
T, h pC,H"v,

the equation (2) and the boundary conditions (3), (4), (5) become:

06 0%0

1-n")—= +N,n", 7
(1-7 )aw o7 Vo ™
w=0,0=0, (8)

06
77=0>—=0a(l//>0)a (9)

on

06
nzla_a(l//>0)7 (10)

on

In equation (7) the coefficient N, is the Brinkman number [9].

It is easy to find that a particular solution of equation (7) which verifies condition (10) is:
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The change of function
O=u+0, (12)

leads to the equation

ou B 0%u
@_1”5J‘anf (13)

The unknown function u will satisfy the conditions (9) and (10) and the initial condition (8) is
replaced by:

w=0,u=-6,. (14)

The type of equation (13) and boundary conditions (9) and (10) allow us to apply the method of
separation of variables in order to determine function u. By this method function u is obtained
under the form:

uw,m) =3 e, @, (n)expl- ), (15)
n=1

where @, and A, are the eigenvalues and the eigenfunctions of Sturm-Liouville problem:

2
3(12)+/12(1—77N)<D=0, (16)
77=0,(31£=0;77=1,j£=0. (17)
n n

The Application of Galerkin’s Method

For the determination of eigenfunctions and eigenvalues of Sturm-Liouville problem (16), (17)
we will apply the Galerkin’s method. For this we consider the operator:

U:D(U)c L,[01]— L,[0.],

D(U):{cpecz[o,l],%(o)ﬂ,%(l):o}, (18)

U(CD)zqu)Jrﬂ,z(l—nN)CD.

2

We look for the solution of Sturm-Liouville problem (16), (17) under the approximate form
o(n)=> a0, (n). (19)
k=1

where n € N” is the approximation level of function ® and (gok ) Lnt 18 @ complete system of

N
functions in L, [0,1], functions which verify the conditions [4]
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49 0)=0, 9% (0)=0, k eN". 20)
dr dr

The unknown coefficients a, , k = I,_n are determined given the conditions
<U(®),p,>=0, j=Ln, 1)
the scalar product being considered in the space of square integrable function L, [0,1].

By applying these conditions we obtain the linear algebraic system in unknowna, , k = I,_n :

n

>y + 4By Jay =0, j=1n. (22)
k=1
where
1d’p, . P
A =)y gy 04 SR =Ln (23)
1 I
ﬁ@=L@—Uthmm,Lk=Ln. (24)

Because the system (22) must have nontrivial solutions, we obtain the equation

A, =|4+2B|=0, (25)

where 4 and B are the matrix 4 = (a k,) —, B= (ﬂkj )k o The solutions of equations (25)

k,j=l,n
represent the approximate values, for the n approximation level, for the eigenvalues /112,

2 2
2 2

The solution of equation (1) is difficult to obtain under this form. Consequently, through
elementary transformations of determinant A, this equation takes the form [5]:

\c-71,

=0, (26)

where [, is the identity matrix of n order.

Unlike matrix 4 and B which are symmetrical, matrix C does not have this property anymore.
Therefore we must adopt an adequate method for the determination of its eigenvalues [8].

In the following we will use the complete system of functions ((pk )keN* inL, [0,1] :

0. (n)=J,(1,m). 27)

where J| is the Bessel function of the first kind and zero order and 4, , k € N" are the roots of

equation:

J,(u)=0. (28)

The integrals which appear in the formulae (23), (24) are calculated with a quadrature formula
that must be compatible with Galerkin’s method [6]. The eigenvalues of the Sturm-Liouville
problem obtained by this method are presented in the next section.

The eigenfunctions of the problem (18), (19) have the analytical form
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q)i(n)zzcion(fujn)a i=1,_n (29)
=

where (c,y,¢;y,7+5,¢,, )i = 1,1 are the eigenvectors of the matrix 4+ 1*B.

The Approximate Solution of the Problem
The unknown function u, for the n level of approximation of Galerkin’s method, is obtained
from (15) and (27):

n
=1

n R 2'//
u(wm)=2(2c,-c,-ke K jfo(/lkﬂ)a (30)
k i=1

The coefficients ¢, ,i = 1,_n from (30) are determined by the use of the condition (14) and by
considering that the solutions ®@,,i = 1,_n of the problem (16), (17) are orthogonal with weight

1—n" by [0,1] [4]. Because the functions D,,i= L_n are not obtained exactly, we prefer to
use the orthogonality with weight 77 of Bessel functions on [0,1]. Thus, for the n level of
approximation, the constants ¢, ,i= I,_n are determined by the resolution of the linear
algebraic system:

2 v
N _[()1(772 —mﬂN ZJUJo(ﬂkﬂ)dU
Br

Zn:cikci =
= 2N |2 ()

The final solution of the problem is obtained now by using the relations (12), (15) and (30):

N 2 Ly i A2
Oy.n)=—2= (772 ————n"" 2y j + Z[Z@c,-ke ”jlo (wn), (2
k=1 i=1

2N N+2

Jk=1n, 31)

Table 1. Eigenvalues of Sturm-Liouville problem

N

0,35 0,5 0,6 0,7 0,75 0,8 0,9 1,0 1,1 1,2

0 0 0 0 0 0 0 0 0 0

14.636 15.828 16.480 17.046 17.302 17.544 17.985 18.380 18.735 19.056

55.720 59.818 62.112 64.129 65.050 65.918 67.516 68.952 70.249 71.426

122,929 | 131.753 | 136.708 | 141.077 | 143.073 | 144.958 | 148.429 | 151.551 | 154.375 | 156.942

216.230 | 231.599 | 240.240 | 247.864 | 251.350 | 254.642 | 260.706 | 266.164 | 271.102 | 275.592

335.614 | 359.347 | 372.699 | 384.485 | 389.874 | 394.964 | 404.343 | 412.786 | 420.426 | 427.373
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481.077 | 514.993 | 534.081 | 550.933 | 558.640 | 565.920 | 579.335 | 591.413 | 602.344 | 612.284

652.615 | 698.533 | 724.384 | 747.209 | 757.648 | 767.510 | 785.683 | 802.045 | 816.855 | 830.323

850.227 | 909.967 | 943.606 | 973310 | 986.896 | 999.731 | 1023.38 | 1044.68 | 1063.95 | 1081.48

1073.91 | 114929 | 1191.74 | 1229.23 | 124638 | 1262.58 | 129243 | 131931 | 1343.65 | 1365.78
An Application

As an example we will consider a fluid with unit Brinkman number. The eigenvalues of Sturm-
Liouville problem (16), (17) are presented in table 1. The coefficients given by (23) and (24) are
obtained by a numerical quadrature procedure [8]. The eigenvalues have been obtained by using

the procedures BALANC, ELMHES, HQR [8]. System (31) has been solved using a procedure

based on Gauss method [8].

The variation of dimensionless temperature & given by (32) is presented in figures 1-6. In
abscisse axis is the reduced transverse distance 77 and in axis of ordinates the dimensionless

temperature € is presented. The variation of dimensionless temperature & is presented for
some values of dimensionless variable v .
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Fig. 1. Dimensionless temperature profiles
for adiabatic walls, n=1 (Newtonian fluid),

NBr=1

0z

Dimensionless temperature
=]
i =
n b

=]
—

Reduced transversed distance

05

Fig. 2. Dimensionless temperature profiles

for adiabatic walls, #=0,9, NBr=1
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Fig. 3. Dimensionless temperature profiles Fig. 4. Dimensionless temperature profiles
for adiabatic walls, n=0,75, NBr=1 for adiabatic walls, n=0,5, NBr=1
0z T 0.15 T T T |

Dimensionless temperature
Dimmensionless temperature

] 0.5 1 ] 0.2 0.4 0.6 0.3 1
Feduced transversed distance Feduced transversed distance
Fig. 5. Dimensionless temperature profiles Fig. 6. Dimensionless temperature profiles
for adiabatic walls, n=0,35, NBr=1 for adiabatic walls, n=0,25, NBr=1

Given the results obtained, we can deduce that for a certain value of the rheological coefficient
n, the temperature of the fluid is increased along the plates. For a given value of the
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dimensionless variable ¥/, the temperature of the fluid is increased together with n. The results
obtained in this article properly fit the results obtained in [9].

The calculations have been realized for the approximation level n =10 and the algorithm
presents considerable stability.

As compared to the method used by Ybarra and Eckert [7], this paper presents the advantage of
a simpler algorithm which can also be adapted to other boundary conditions (Dirichlet [1] and
Robin type conditions) by an appropriate changing of the condition.(17) and of the
equation.(28).
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Asupra disipatiei vascoase in migcarea fluidelor
incompresibile printre doua placi plane paralele

Rezumat

In acest articol este studiati problema disipatiei vdscoase in miscarea laminard incompresibild a unui
fluid vdscos printre doud placi plane paralele cu conditii la limitd de tip Neumann. Se utilizeaza pentru
determinarea temperaturii fluidului metoda separdrii variabilelor. Solutia problemei se obtine astfel sub
forma unei serii dupd sistemul complet de functii proprii unei probleme de tip Sturm-Liouville. Functiile
si valorile proprii ale acestei probleme Sturm-Liouville sunt obtinute cu ajutorul metodei lui Galerkin.



