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Abstract 
This paper considers the problem of viscous dissipation in the laminar incompressible fluid flow between 
two parallel plates with Neumann boundary conditions. The method proposed to determine the 
temperature of the fluid makes use of the separation of variables. Thus the solution of the problem is 
obtained by series expansion about the complete eigenfunctions system of a Sturm-Liouville problem. 
Eigennfunctions and eigenvalues of this Sturm-Liouville problem is obtained by Galerkin’s method. 
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Introduction 

The problem of viscous dissipation in the fluid flow has many practical applications. An 
example is oil products transportation through ducts; another is the polymer processing. 

Now we will consider the incompressible laminar fluid flow between two infinite parallel plates. 
The plates are maintained at a constant temperature 0T  and the fluid flows through the plates 
with the same temperature. The flow is slow, thus we can neglect the heat transfer by 
conduction in flow direction. At the same time we will consider that the fluid density ρ , 
specific heat pC and the heat transfer coefficient k  are constants. The flow is related to a 

cartesian coordinate system, the Ox  axis will be directed to the flow direction, the Oy  axis is 
normal to the plates and the distance between plates is h2 . A similar problem but with Dirichlet 
boundary conditions was considered in [1]. 

For the fluid velocity in the cross section we will consider the expression 

 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−=

N

h
yvv 10 , (1) 

where 0v  is the maximal fluid velocity, ( ) nnN /1+=  where n is a rheological constant of the 
fluid. For Newtonian fluids 1=n , for Bingham expanded fluid 1<n  and for Bingham 
pseudoplastic fluid 1>n . 

Given these conditions the energy equation is [3], [9]: 
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where K is a rheological constant of the fluid. 

The aim of this article is to establish an approximate solution of equation (1), which verifies 
certain initial conditions and Neumann boundary conditions. For this we shall follow the 
method proposed in [1]. 

The plan of the article is: in section two we formulate the mathematical problem, section three 
will contain the algorithm for determination of eigenvalues and eigenfunctions (for the Sturm-
Liouville problem obtained by method of separation of variables) with Galerkin’s method [2], in 
section four we will present the approximate solution of the problem and the last section 
contains some numerical results. 

The Mathematical Problem 

We associate to equation (1) the initial condition 

 0,0 TTx ==  (3) 

and boundary conditions 

 )0(,0,0 >=
∂
∂

= x
y
Ty  (4) 

 )0(,0, >=
∂
∂

= x
y
Thy . (5) 

Condition (4) specifies that at the middle of the distance between plates the temperature has a 
maximum point and condition (5) specifies the adiabatic wall (Neumann boundary condition). 

It is suitable to rewrite the equation (2) and the initial and boundary conditions (3), (4), (5) in 
dimensionless form. With the transformation group 
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the equation (2) and the boundary conditions (3), (4), (5) become: 
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In equation (7) the coefficient BrN  is the Brinkman number [9]. 

It is easy to find that a particular solution of equation (7) which verifies condition (10) is: 
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The change of function 

 1θθ += u  (12) 

leads to the equation 
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The unknown function u will satisfy the conditions (9) and (10) and the initial condition (8) is 
replaced by: 

 1,0 θψ −== u . (14) 

The type of equation (13) and boundary conditions (9) and (10) allow us to apply the method of 
separation of variables in order to determine function u. By this method function u is obtained 
under the form: 
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where nΦ  and nλ  are the eigenvalues and the eigenfunctions of Sturm-Liouville problem: 
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The Application of Galerkin’s Method 

For the determination of eigenfunctions and eigenvalues of Sturm-Liouville problem (16), (17) 
we will apply the Galerkin’s method. For this we consider the operator: 
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We look for the solution of Sturm-Liouville problem (16), (17) under the approximate form 
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where ∗∈Nn  is the approximation level of function Φ  and ( ) ∗∈Nkkϕ  is a complete system of 

functions in [ ]1,02L , functions which verify the conditions [4] 



26  Tudor Boacǎ  
 

 

 ( ) ( ) 00
d

d
,00

d
d

==
rr

kk ϕϕ
, ∗∈Nk . (20) 

The unknown coefficients nkak ,1, =  are determined given the conditions 

 ( ) 0, =>Φ< jU ϕ , nj ,1= , (21) 

the scalar product being considered in the space of square integrable function [ ]1,02L . 

By applying these conditions we obtain the linear algebraic system in unknown ka , nk ,1= : 
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Because the system (22) must have nontrivial solutions, we obtain the equation 

 02 =+≡∆ BAn λ , (25) 

where A and B are the matrix ( )
njkkjA

,1, =
= α , ( )

njkkjB
,1, =

= β . The solutions of equations (25) 

represent the approximate values, for the n approximation level, for the eigenvalues 2
1λ , 

22
2 ,, nλλ L . 

The solution of equation (1) is difficult to obtain under this form. Consequently, through 
elementary transformations of determinant n∆  this equation takes the form [5]: 

 02 =− nIC λ , (26) 

where nI  is the identity matrix of n order. 

Unlike matrix A and B which are symmetrical, matrix C does not have this property anymore. 
Therefore we must adopt an adequate method for the determination of its eigenvalues [8]. 

In the following we will use the complete system of functions ( ) ∗∈Nkkϕ  in [ ]1,02L :  

 ( ) ( )ηµηϕ kk J 0= , (27) 

where 0J  is the Bessel function of the first kind and zero order and ∗∈Nkk ,µ are the roots of 
equation: 

 ( ) 01 =µJ . (28) 

The integrals which appear in the formulae (23), (24) are calculated with a quadrature formula 
that must be compatible with Galerkin’s method [6]. The eigenvalues of the Sturm-Liouville 
problem obtained by this method are presented in the next section. 

The eigenfunctions of the problem (18), (19) have the analytical form 
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where ( ) niccc inii ,1,,,, 21 =L  are the eigenvectors of the matrix BA 2λ+ . 

The Approximate Solution of the Problem 

The unknown function u, for the n level of approximation of Galerkin’s method, is obtained 
from (15) and (27): 
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The coefficients nici ,1, =  from (30) are determined by the use of the condition (14) and by 

considering that the solutions nii ,1, =Φ  of the problem (16), (17) are orthogonal with weight 
Nη−1  by [0,1] [4]. Because the functions nii ,1, =Φ  are not obtained exactly, we prefer to 

use the orthogonality with weight η  of Bessel functions on [0,1]. Thus, for the n level of 

approximation, the constants nici ,1, =  are determined by the resolution of the linear 
algebraic system: 
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The final solution of the problem is obtained now by using the relations (12), (15) and (30): 
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Table 1. Eigenvalues of Sturm-Liouville problem 

 

N 

0,35 0,5 0,6 0,7 0,75 0,8 0,9 1,0 1,1 1,2 

2
nλ  

0 0 0 0 0 0 0 0 0 0 

14.636 15.828 16.480 17.046 17.302 17.544 17.985 18.380 18.735 19.056 

55.720 59.818 62.112 64.129 65.050 65.918 67.516 68.952 70.249 71.426 

122.929 131.753 136.708 141.077 143.073 144.958 148.429 151.551 154.375 156.942 

216.230 231.599 240.240 247.864 251.350 254.642 260.706 266.164 271.102 275.592 

335.614 359.347 372.699 384.485 389.874 394.964 404.343 412.786 420.426 427.373 
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481.077 514.993 534.081 550.933 558.640 565.920 579.335 591.413 602.344 612.284 

652.615 698.533 724.384 747.209 757.648 767.510 785.683 802.045 816.855 830.323 

850.227 909.967 943.606 973.310 986.896 999.731 1023.38 1044.68 1063.95 1081.48 

1073.91 1149.29 1191.74 1229.23 1246.38 1262.58 1292.43 1319.31 1343.65 1365.78 

An Application 

As an example we will consider a fluid with unit Brinkman number. The eigenvalues of Sturm-
Liouville problem (16), (17) are presented in table 1. The coefficients given by (23) and (24) are 
obtained by a numerical quadrature procedure [8]. The eigenvalues have been obtained by using  

the procedures BALANC, ELMHES, HQR [8]. System (31) has been solved using a procedure 
based on Gauss method [8]. 

The variation of dimensionless temperature θ  given by (32) is presented in figures 1-6. In 
abscisse axis is the reduced transverse distance η  and in axis of ordinates the dimensionless 
temperature θ  is presented. The variation of dimensionless temperature θ  is presented for 
some values of dimensionless variable ψ . 

  

Fig. 1. Dimensionless temperature profiles  
for adiabatic walls, n=1 (Newtonian fluid),  

NBr=1 

Fig. 2. Dimensionless temperature profiles 
for adiabatic walls, n=0,9, NBr=1 
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Fig. 3. Dimensionless temperature profiles  

for adiabatic walls, n=0,75, NBr=1 
Fig. 4. Dimensionless temperature profiles 

for adiabatic walls, n=0,5, NBr=1 

Fig. 5. Dimensionless temperature profiles  
for adiabatic walls, n=0,35, NBr=1 

Fig. 6. Dimensionless temperature profiles  
for adiabatic walls, n=0,25, NBr=1 

Given the results obtained, we can deduce that for a certain value of the rheological coefficient 
n, the temperature of the fluid is increased along the plates. For a given value of the 
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dimensionless variable ψ , the temperature of the fluid is increased together with n. The results 
obtained in this article properly fit the results obtained in [9]. 

The calculations have been realized for the approximation level 10=n  and the algorithm 
presents considerable stability. 

As compared to the method used by Ybarra and Eckert [7], this paper presents the advantage of 
a simpler algorithm which can also be adapted to other boundary conditions (Dirichlet [1] and 
Robin type conditions) by an appropriate changing of the condition.(17) and of the 
equation.(28). 
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Asupra disipaţiei vâscoase în mişcarea fluidelor 
incompresibile printre două plăci plane paralele  

Rezumat 
În acest articol este studiată problema disipaţiei vâscoase în mişcarea laminară incompresibilă a unui 
fluid vâscos printre două plăci plane paralele cu condiţii la limită de tip Neumann. Se utilizează pentru 
determinarea temperaturii fluidului metoda separării variabilelor. Soluţia problemei se obţine astfel sub 
forma unei serii după sistemul complet de funcţii proprii unei probleme de tip Sturm-Liouville. Funcţiile 
şi valorile proprii ale acestei probleme Sturm-Liouville sunt obţinute cu ajutorul metodei lui Galerkin.


